སེམས་ལྡན་གྱི་དངོས་ཁམས་རིག་པ༎

A physics of sentience

By Dr. Karl J. Friston
University College London & VERSES Research Lab

Introduction

This chapter considers the notion of sharedness through the lens of physics. In particular, it uses the free energy principle (Friston, 2013) to deconstruct the fundaments of self-organisation—and how scale-invariant self-organisation rests upon shared generative or world models. Technically, this aspect of ensemble or distributed self-organisation manifests as generalised synchrony (a.k.a., synchronisation of chaos). Crucially, the ensuing synchronisation can be read in terms of inference and [Bayesian] belief sharing. In short, by considering the existential imperatives for any thing (sic), one is necessarily led to the conclusion that for some thing (sic) to self-organise is: (i) to share a common ground or generative model of a shared world, and (ii) to exchange beliefs (and knowledge) with other things, under that model.

In what follows, we first briefly rehearse the free energy principle, with a focus on what constitutes the self in self-organisation. We then consider two aspects of the ensuing Bayesian mechanics—or physics of sentience—that speak to the chapter by Chris Fields; namely, the representation of uncertainty or precision, and the constructive aspect of our generative models, respectively. This chapter concludes by considering the foundational role of shared generative models when deploying the free energy principle over nested scales of self-organisation.

On the nature of sentience from first principles

We start with the notion of things that can be individuated from other things. This individuation licences a description of self-organisation in terms of inference and modelling. Examples here range from the good regulator theorem from cybernetics (Conant and Ashby, 1970) through to modern day treatments under the free energy principle (Ramstead et al., 2022). The dénouement of these treatments is straightforward: to exist is to be in states that are characteristic of the thing in question. Formally, to exist is to maximise the path (or time) integral of the likelihood of being in characteristic or attracting states (Friston et al., 2022a). This can be read as maximising the marginal likelihood of exchanges with the world, also known as Bayesian model evidence. From a physicist’s perspective, this is nothing more than a principle of least action, or constrained maximum entropy principle (Sakthivadivel, 2022). From the perspective of a philosopher or psychologist to exist is to self-evidence (Hohwy, 2016). Model evidence speaks to the key role of generative models that underwrite the marginal likelihood and its variational bounds: i.e., variational free energy (Winn and Bishop, 2005). The generative model is nothing more than a probabilistic statement of the characteristic states jointly occupied by the world and the thing in question. So what does this buy us?

If existing, in a characteristic way, just is securing evidence for our generative models, then everything that exists can be described as engaging in inference. On a Bayesian gloss, this can be read as Bayesian belief updating, under a generative model that specifies attracting or characteristic states. This reading is appealing because it concurs with physics, in the sense that physics is a description of inference or measurement: ranging from quantum information theory (Fields et al., 2021a), through to the observational nature of physics (Cook, 1994). Indeed, the Bayesian mechanics unpacked below shares exactly the same foundations as quantum, classical and statistical mechanics. But pays careful attention to the individuation of things from the rest of the world (Friston, 2019). This line of thinking places generative models and belief updating centre stage in exchanges with the world.

Is belief updating a sufficient account of sentient behaviour? Perhaps. However, there are different kinds of things, which are characterised by the generative models they entail. One key aspect of these models is their temporal depth. In other words, the ability to model the future and, in particular, the consequences of their actions or choices. This means there may be certain kinds of things (like us) that have deep generative models, which support planning as inference (Attias, 2003; Botvinick and Toussaint, 2012; Lanillos et al., 2021). At this point, we encounter the kinds of things that evince agency, in a nontrivial sense; namely, things that choose what to do by inferring their action. On this view, intelligent behaviour has an interesting corollary:

It transpires that agents—to which the principle of least action applies—minimise a functional called expected free energy. Expected free energy can be decomposed into expected information gain and expected value, where value is the log likelihood of attracting or characteristic outcomes. This means that intelligent behaviour complies with the dual aspects of Bayesian optimality; namely, optimal Bayesian design (Lindley, 1956; Mackay, 1992) and decision theory (Berger, 2011), respectively. In short, to be intelligent is to be curious (with values).

The foundations of this account of sentient behaviour can be traced back to the students of Plato and were most clearly articulated in the 19th-century by Helmholtz as unconscious inference (Helmholtz, 1866/1962, 1878 (1971))—ideas that are reminiscent of Kantian philosophy. These ideas endured through the 20th-century in several flavours; for example, analysis by synthesis (Neisser, 1967; Yuille and Kersten, 2006), epistemological automata (MacKay, 1956), perception as hypothesis testing (Gregory, 1968, 1980) and, in machine learning, the Helmholtz machine (Dayan et al., 1995). The inference narrative supervened at the turn of the century, with a resurgence of interest in enactivist approaches (Barsalou, 2008; Chemero, 2009; Clark, 2001; Clark and Chalmers, 1998; Goodwin, 2000; Hutto and Myin, 2013) that now predominate in the cognitive and systems neurosciences, in the form of things like predictive processing and active inference (Ballard et al., 2013; Clark, 2013b; Friston et al., 2010; Hohwy, 2013; Hohwy, 2020; Parr and Friston, 2018; Rao and Ballard, 1999; Seth, 2014; Wiese, 2017).

Active inference can be read as an enactive version of the Bayesian brain hypothesis (Doya, 2007; Knill and Pouget, 2004) that subsumes sentience (perceptual inference) and behaviour by treating control and planning as inference (Attias, 2003; Botvinick and Toussaint, 2012; Da Costa et al., 2020; Lanillos et al., 2021). So, what is inference? In this setting, inference just refers to a process that maximises the evidence for some (generative) model or hypothesis about the causes of (sensory) data. Model evidence is also known as marginal likelihood; namely, the likelihood of some data, under a model of how those data were generated. Maximising the evidence for our own generative model is sometimes called self-evidencing (Hohwy, 2016). In brief, active inference casts the brain as a fantastic organ: a generator of fantasies, hypotheses and predictions that are tested against sensory evidence. One might ask how this account of sentient behaviour speaks to the nature of things. In what follows, we will look at the brain and how one can understand its functional architecture under this kind of physics.

Predictive coding and Bayesian belief updating

Given a generative model, there are well described belief-updating or propagation schemes that specify the requisite message passing that must, in some form, be implemented by [neuronal] networks. For generative models based upon continuous states of the world, these schemes are known as Bayesian filters or predictive coding (Bastos et al., 2012; Egner and Summerfield, 2013; Elias, 1955; Rao and Ballard, 1999; Srinivasan et al., 1982). In generative models of discrete states (e.g., “I am in the kitchen”, as opposed to “I am at these continuous GPS coordinates”) the message passing schemes are variously known as belief propagation or variational message passing (Dauwels, 2007; Friston et al., 2017; Parr et al., 2019; Winn and Bishop, 2005). All of these schemes can be cast as a gradient ascent on model evidence or marginal likelihood (Da Costa et al., 2021). In short, [neuronal] dynamics just are a process of inference. See Figure 1 for a schematic description of predictive coding.

Crucially, the gradients that subtend neuronal dynamics—and consequent belief updating—can always be formulated as a prediction error (Friston et al., 2017): that is, the divergence between predictions of sensory input and the observed sensations. In predictive coding schemes, it is thought that prediction errors are represented explicitly by superficial pyramidal cells in the upper layers of the cortex (Adams et al., 2013; Bastos et al., 2012; Lee and Mumford, 2003; Mumford, 1992; Shipp, 2016).

A diagram of a brain

Description automatically generated
Figure 1: This figure summarizes hierarchical message passing in predictive coding. Predictive coding is a scheme for generative models based upon continuous states. In these schemes, neuronal activity encodes expectations about the causes of sensory input that are continually updated to minimize prediction error. Prediction error is the difference between (ascending) sensory input and (descending) predictions of that input. This minimization rests upon recurrent neuronal interactions among different levels of a cortical hierarchy. It is thought that superficial pyramidal cells (red triangles) compare the expectations (at each hierarchical level) with top-down predictions from deep pyramidal cells (black triangles) of higher levels: see (Bastos et al., 2012) for a review. Left panel: this schematic shows a simple cortical hierarchy with ascending prediction errors and descending predictions. We have included neuromodulatory gating or gain control (teal) of superficial pyramidal cells that determines their relative influence on deep pyramidal cells encoding expectations. Right panel: this provides a schematic example in the visual system: it shows the putative cells of origin of ascending or forward connections that convey prediction errors (red arrows) and descending or backward connections (black arrows) that furnish predictions. The prediction errors are weighted by their expected precision, which we have associated with projections from the pulvinar. In this example, the frontal eye fields send predictions to primary visual cortex, which projects to the lateral geniculate body. However, the frontal eye fields also send proprioceptive predictions to pontine nuclei, which are passed to the oculomotor system to induce movement, through classical oculomotor reflexes. This means that saccadic eye movements, for example, realise top-down proprioceptive predictions that are deeply informed by hierarchical processing of data from all sensory modalities. Similar schemes can be elaborated for discrete state space generative models, responsible for planning and motor control—or allostasis and autonomic function: see (Parr and Friston, 2018) for equivalent schematics and (Friston et al., 2017) for mixtures of continuous and discrete models.

Summary

This leads to a picture of hierarchical inference—in the brain—as reciprocal message passing between the levels of a cortical hierarchy; in which prediction errors ascend from lower to higher levels to drive changes in neuronal populations encoding states of affairs in the world. These populations (e.g., deep pyramidal cells in lower layers of the cortex) then supply a counter stream of descending predictions that resolve or cancel prediction errors at lower levels (Bastos et al., 2012; Markov et al., 2013; Mumford, 1992): e.g., by targeting inhibitory interneurons that are coupled to the superficial pyramidal cells broadcasting prediction errors (Pinotsis et al., 2014; Shaw et al., 2017). This architecture also plays out under discrete generative models and has become something of a workhorse for understanding recurrent message passing in cortical and subcortical hierarchies. On this view, self evidencing can be construed as minimising prediction errors or, more simply, surprise. In terms of information theory, this surprise (a.k.a., surprisal) is known as self-information. Variational free energy provides a tractable bound on self-information. In summary, minimising free energy is equivalent to minimising surprise, which is synonymous with maximising the evidence for generative models, under which sensory exchange with the environment is surprising.

The importance of being precise

The foregoing speaks to a physics of sentience or Bayesian mechanics that allows us to read the behaviour of others—and ourselves—as making inferences about the sensed world. One popular application of the free energy principle is to cast belief updating or message passing in the brain in terms of predictive coding. There are many interesting aspects to this application. We will pick out one that underwrites the notion of felt uncertainty. This rests upon the notion of precision and, on a psychological reading, notions of covert action or mental activity, such as attention.

Prediction errors (i.e., the free energy gradients that drive belief updating) can be regarded as carrying newsworthy information—at any given hierarchical level—to the level above. However, this is not the complete story. Higher levels have to select which prediction errors to listen to; much in the same way that we select our trustworthy news channels or sources of information. This selection rests upon predictions of predictability or precision (depicted in teal in Figure 1). Affording certain prediction errors greater precision increases their influence on belief updating and has all the hallmarks of attentional selection (Ainley et al., 2016; Auksztulewicz and Friston, 2015; Clark, 2013a; Feldman and Friston, 2010; Kok et al., 2012; Limanowski, 2022). Physiologically, this simply entails an increase in the excitability or postsynaptic gain of neuronal populations broadcasting prediction errors. On this view, there is an intimate relationship between attention and the modulation of synaptic efficacy by classical neuromodulators and nonlinear postsynaptic responses responsible for mediating the exchange between fast-spiking inhibitory interneurons and pyramidal cells (Auksztulewicz and Friston, 2015; Bauer et al., 2014; Graboi and Lisman, 2003; Lisman, 2012; Lisman and Buzsaki, 2008; Pinotsis et al., 2014; Shaw et al., 2017; Sohal et al., 2009; Spencer et al., 2003).

One crucial aspect of this precision engineering is that it underwrites our ability to filter out—or ignore—certain prediction errors when they are deemed imprecise. A key example is the attenuation of sensory prediction errors that report the consequences of movement (Blakemore et al., 1999; Brown et al., 2013; Hughes et al., 2013; Limanowski, 2017; Oestreich et al., 2015; Shergill et al., 2005). If we could not ignore the proprioceptive and somatosensory afferents—supplying evidence that we are not moving—then any intended or predicted movement would be revised immediately, and we would not be able to move. This mandates a transient suspension of sensory precision during active sensing: c.f., saccadic suppression of optic flow signals during saccadic eye movements (Wurtz, 2008).

Summary

The narrative so far is that things like brains are statistical organs, generating predictions and revising (subpersonal Bayesian) beliefs on the basis of prediction errors. Crucially, these predictions are contextualised with predictions of precision or predictability that instantiate attentional or intentional set; allowing us to select or attenuate prediction errors via a process of precision weighting. This precision weighting is nothing more than modulating the gain, postsynaptic sensitivity or excitability of appropriate neuronal populations. 

The schematic in Figure 1 highlights a key aspect of the generative models that are fit for purpose to navigate our lived world; namely, the hierarchical structure. This kind of architecture can be viewed from many perspectives; namely, factorial, hierarchical and temporal depth. These notions are foregrounded to connect the treatment offered by Chris Fields who emphasises the constructivist aspect of active inference; in the sense, that we are in the game of constructing hypotheses or explanations for the sensory or empirical data available to us. In short, everything is a hypothesis that is most apt to explain our sensory samples—or the way that we measure the world. Crucially, these constructs may include space and time per se, and, perhaps, the very constructs of self and experience (Clark et al., 2019).

Shared narratives and generalised synchrony

In this final section, we consider the implications of self-evidencing under the free energy principle. There are many ways of approaching this subject; ranging from variational approaches to niche construction (Badcock et al., 2019; Bruineberg et al., 2018; Constant et al., 2018; Constant et al., 2019; Vasil et al., 2020; Veissiere et al., 2019); particularly, in an evolutionary setting (see Richard Watson – this issue), through federated inference and belief sharing to communication and distributed cognition (Fields et al., 2021b; Friston and Frith, 2015a; Friston and Frith, 2015b; Friston et al., 2020; Friston et al., 2022b; Levin, 2019; Pezzulo et al., 2021).

These treatments or perspectives share a common theme. Specifically, if any given thing—at any given scale—can be read as self-evidencing, then it will act upon its world to minimise surprise and maximise predictability. If this world is constituted by other things—that are therefore acting under the same imperatives—there is an inevitable (or perhaps emergent) tendency towards mutual predictability. From the perspective of a physicist, it will look as if an ensemble of self-evidencing agents evince something called generalised synchrony or synchronisation of chaos. Generalised synchrony comes in two flavours: identical and not. In identical synchronisation there is a one-to-one mapping between the dynamics of two systems. When this symmetry is broken, we have generalised synchrony. Generalised synchrony means that I can use my state to predict your dynamics and vice versa. It can be described in terms of a tendency for both of us to occupy a shared set of states on something called a synchronisation manifold; namely, an attracting set of states that lies in our joint state space.

Occupying these states just is to minimise our joint variational free energy. Note that by evincing generalised synchrony we are occupying shared characteristics states; namely, the states to which we are attracted, and have value for us. In other words, it will look as if I am acting to realise your characteristic (attracting) states, and you mine. This could be regarded as a form of mathematical ‘caring’ that emerges under a shared synchronisation manifold.

Figures 2 and 3 illustrate the emergence of generalised synchronisation in the context of dyadic exchange. This example rests upon a predictive coding simulation of communication with birdsong between two songbirds that have the same generative model (Friston and Frith, 2015a). By taking turns, they are never surprised—and never surprise themselves. This is because the only thing that changes periodically is whose turn it is to generate the sensorium. Anecdotally, the two birds jointly create a predictable sensorium by ‘singing from the same hymn sheet’.

But what would happen if two birds had different generative models? Because free energy minimisation entails learning (i.e., belief updating about the parameters of a generative model at a slower timescale), one bird will come to learn the others generative model in order to make it more predictable (and vice versa). The degree to which the generative model of some thing converges to the generative model of another depends upon their relative precision (Friston and Frith, 2015b). This is nicely conceptualised in terms of parent-daughter, teacher-student and inter-actions between any two things that have different experiences of a shared world.

Figure 2: a soliloquy for two. In this simulation, two birds with the same generative models—but different initial expectations—sing for a second and then listen for any response. However, the birds cannot hear each other, and the successive epochs of songs diverge due to the sensitivity to initial conditions implicit in their (chaotic) generative models. The upper panel shows the sonogram heard by the first (red) bird. Because this bird can only hear itself, the sonogram reflects the proprioceptive predictions based upon posterior expectations in a higher vocal centre (middle panel) and area X (lower panel). The posterior expectations for the first bird are shown in red as a function of time. The equivalent expectations for the second bird are shown in blue. Note that when both birds are listening, their expectations at the first level fall to zero, because they do not hear anything and auditory input is attended to (i.e., has a relatively high precision). Please see (Friston and Frith, 2015a) for technical details.
Figure 3: a Duet for one. This figure uses the same format as Figure 2; however, here, the two birds can hear each other. In this instance, the posterior expectations show identical synchrony at both the first and second hierarchical levels, as shown in the middle and lower panels respectively. Note that the sonogram is continuous over successive one second epochs — being generated alternately by the first and second bird.

The attendant phenomena and mechanisms of belief-sharing, distributed cognition (i.e., federated inference) are manifold. These can be considered in terms of the spread of ideas (Albarracin et al., 2022; Heins et al., 2023; Kastel and Hesp, 2021), through to the emergence of language as a free energy minimising process (Constant et al., 2019; Vasil et al., 2020; Veissiere et al., 2019). We will conclude with an example of generalised synchrony at a basal level that can be read as morphogenesis or pattern formation in the development of a system of multiple things; for example, cells (Kuchling et al., 2020).

Figures 4 and 5, are taken from (Friston et al., 2015). These simulations represent an early attempt to show that morphogenesis is an emergent property of joint free energy minimisation. In this example, the dynamics of different constituents of an ensemble—here, the cells of a multicellular ensemble—are markedly different; however, they all share the same (epigenetically specified) generative model illustrated in Figure 4.

Figure 4: target morphology. This figure illustrates the generative model shared by an ensemble of eight cells that can move around in response to signals that the generate. The right panels show the encoding of target locations (upper left) and cell type (lower left). This encoding can be regarded as a genetic code specifying the chemotactic signals expressed by each cell, which is associated with a specific location, relative to other cells. In other words, the intracellular location of the code may encode the extracellular location, as indicated in the schematic (middle panel) associating signal expression with binary codons. The corresponding configuration is shown in the upper right panel, where the last three signal expressions are used to differentiate cells (using a red-green-blue color scheme). The locations of the eight cells are shown with filled stars. The lower right panel shows the target concentrations that would be sensed at each location under this target configuration. Please see (Friston et al., 2015) for details.

However, this generative model prescribes what would be sensed in different contexts. The twist in this example is that each agent provides the sensations for other agents by broadcasting their internal states (i.e., implicitly their beliefs). In other words, every agent sets the context for other agents. This means that each agent has to find the right context to make its sensations predictable—and this context is established by other agents. In this example, the context is simply the physical location or place from which beliefs or signals are broadcast. This means that there is one, unique, free energy minimising solution in which all the agents (i.e., cells) have ‘found their place’. This is a nice example of how committing to a shared generative model leads to individuation and collective behaviour of a highly structured and unique sort: see Figure 5.

A collage of different colored lines

Description automatically generated
Figure 5: self-assembly. This figure shows the results of a simulation where eight (synthetic) cells minimize their variational free energy under a shared generative model (shown in the previous figure). This simulation used a local linear approximation to perform a gradient descent on variational free energy in 32 time steps, using the target morphology for eight cells in Figure 4. Each time step can be thought of as modelling migration and differentiation over several minutes. The upper panels show the time courses of expectations about cell identity (left), the associated active states mediating migration and signal expression (middle) and the resulting trajectories; projected onto the first (vertical) direction; color-coded to show differentiation. These trajectories progressively minimize free energy (lower left panel), resulting in expectations that establish a relatively unique differentiation of the ensemble (lower middle panel). This panel shows the softmax function of expectations for each of the cells, which can be interpreted as the posterior beliefs that each cell (column) occupies a particular place in the ensemble (rows). The columns have been reordered so that the maximum in each row lies along the leading diagonal. The lower right panel shows the ensuing configuration using the same format as Figure 4. Here, the trajectory is shown in small circles (for each time step). The insert corresponds to the target configuration.

Conclusion

Clearly, we—where ‘we’ is read as every thing that exists—constitute an ecosystem and cannot all share the same generative model. Can the notion of generalised synchrony then be extended to situations in which different kinds of things are coupled to each other? The answer is yes and speaks to the notion that every thing must act in a (mathematically) caring way on another, in the following sense: if the observable aspects of something have characteristic states (i.e., the states of the attracting set), then minimising surprising observations is to act in a way that increases the probability that things will remain in the states to which they are attracted. If to ‘suffer’ is to be in a surprising state, then any enduring ecosystem—that evinces the distributed sentence implied by the free energy principle—will look as if it is caring for its denizens.

About the author

Karl Friston is a theoretical neuroscientist and authority on brain imaging. He invented statistical parametric mapping (SPM), voxel-based morphometry (VBM) and dynamic causal modelling (DCM). These contributions were motivated by schizophrenia research and theoretical studies of value-learning, formulated as the dysconnection hypothesis of schizophrenia. Mathematical contributions include variational Laplacian procedures and generalized filtering for hierarchical Bayesian model inversion. Friston currently works on models of functional integration in the human brain and the principles that underlie neuronal interactions. His main contribution to theoretical neurobiology is a free-energy principle for action and perception (active inference). Friston received the first Young Investigators Award in Human Brain Mapping (1996) and was elected a Fellow of the Academy of Medical Sciences (1999). In 2000 he was President of the international Organization of Human Brain Mapping. In 2003 he was awarded the Minerva Golden Brain Award and was elected a Fellow of the Royal Society in 2006. In 2008 he received a Medal, College de France and an Honorary Doctorate from the University of York in 2011. He became of Fellow of the Royal Society of Biology in 2012, received the Weldon Memorial prize and Medal in 2013 for contributions to mathematical biology and was elected as a member of EMBO (excellence in the life sciences) in 2014 and the Academia Europaea in (2015). He was the 2016 recipient of the Charles Branch Award for unparalleled breakthroughs in Brain Research and the Glass Brain Award – a lifetime achievement award in the field of human brain mapping. He holds Honorary Doctorates from the University of Zurich and Radboud University.

གླེང་བརྗོད།

ལེའུ་འདིར་དངོས་ཁམས་རིག་པའི་ལམ་ནས་ཐུན་མོང་བའི་ལྟ་ཚུལ་ལ་བསམ་གཞིག་བྱ་རྒྱུ་དང་། ལྷག་པར་དུ་རང་དབང་ནུས་པའི་རྩ་འཛིན་བཀོལ་སྤྱོད་ཀྱིས་རང་སྒྲིག་འཛུགས་ཀྱི་གཞི་རྟེན་གཏོར་བཤིག་གཏོང་རྒྱུ་དང་། རང་སྒྲིག་འཛུགས་ཀྱི་གཞི་རྒྱ་ཆེ་ཆུང་ལ་འགྱུར་བ་མེད་པ་དེ་ཐུན་མོང་བའི་སྐྱེད་སྐྲུན་གྱི་དཔེ་གཞིའམ་འཇིག་རྟེན་གྱི་དཔེ་གཞིའི་ཐོག་ཇི་ལྟར་བརྟེན་ཡོད་མེད་བཅས་ཀྱི་སྐོར་ལ་བསམ་གཞིག་བྱ་རྒྱུ་ཡིན། ཚན་རིག་གི་ཐོག་ནས་བཤད་ན་ཚོགས་པ་གཅིག་གམ་རང་འགུལ་སྒྲིག་འཛུགས་ཀྱི་རྣམ་པ་འདི་སྤྱི་ཁྱབ་ཀྱི་དུས་མཉམ་གྱི་ངོ་བོར་མངོན་དུ་འགྱུར་ཞིང་། གནད་དོན་གལ་ཆེན་ཞིག་ནི་རྗེས་ཀྱི་དུས་མཉམ་དེ་རྗེས་དཔག་དང་ཐུན་མོང་གི་ཡིད་ཆེས་གཉིས་ཀྱི་ཐོག་ནས་གོ་བ་ལེན་ཐུབ། མདོར་ན་ཆོས་གང་ལ་ཡང་རང་བཞིན་གྱིས་གྲུབ་པའི་དགོས་པ་ལ་བསམ་བློ་བཏང་ན། ཆོས་གང་ཞིག་རང་ངོས་ནས་གྲུབ་པ་ནི། ཐུན་མོང་གི་གཞི་རྟེན་ནམ་ཐུན་མོང་གི་འཇིག་རྟེན་གྱི་སྐྱེད་བྱེད་ཀྱི་དཔེ་མཚོན་ཞིག་ལ་བརྟེན་ནས་ཆོས་གཞན་དང་ཡིད་ཆེས་དང་ཤེས་རྟོགས་བརྗེ་རེས་བྱེད་དགོས་པའི་མཇུག་སྡོམ་འཇོག་དགོས་པ་ངེས་གཏན་ཡིན།

གཤམ་དུ་ང་ཚོས་ཐོག་མར་རང་དབང་ནུས་པའི་རྩ་འཛིན་ལ་སྦྱོང་བརྡར་མདོར་བསྡུས་ཤིག་བྱ་རྒྱུ་དང་། དེའི་ནང་རང་སྒྲིག་རང་འགུལ་གྱི་བདག་དེ་ཅི་ཞིག་གིས་གྲུབ་ཡོད་མེད་ལ་དོ་སྣང་བྱ་རྒྱུ་ཡིན། དེ་ནས་ང་ཚོས་བྷེ་ཡེ་སེའི་འགུལ་ཤུགས་རིག་པའམ་སེམས་ལྡན་དངོས་ཁམས་རིག་པའི་ཆ་ཤས་གཉིས་ལ་བསམ་གཞིག་བྱ་རྒྱུ་ཡིན། ཆ་ཤས་འདི་གཉིས་ནི་མཱར་ཁི་སོལ་མ་སི་དང་ཁི་རིས་ཧྥིལ་ཌེ་གཉིས་ཀྱིས་ལེའུ་འདིའི་ནང་གླེང་ཟིན་པ་སྟེ། ངེས་གཏན་མེད་པའམ་ཏག་ཏག་མེད་པའི་མཚོན་བྱེད་དང་། ང་ཚོའི་སྐྱེད་སྐྲུན་གྱི་དཔེ་གཞིའི་བཟོ་བཀོད་ཀྱི་ཆ་བཅས་ཡིན། ལེའུ་འདིར་རང་སྒྲིག་རང་འགུལ་གྱི་ཚད་གཞི་རྒྱ་ཆེ་བའི་སྟེང་དུ་རང་དབང་གི་ནུས་པའི་རྩ་འཛིན་ལག་བསྟར་བྱེད་སྐབས་ཐུན་མོང་གི་སྐྱེད་སྐྲུན་གྱི་དཔེ་གཞིའི་གཞི་རྩའི་བྱེད་སྒོ་ལ་བསམ་གཞིག་བྱས་ཏེ་མཇུག་བསྡུས་ཡོད།

སེམས་ཅན་རང་བཞིན་ཐོག་མ་མེད། །

ང་ཚོས་དངོས་པོ་རྣམས་དངོས་པོ་གཞན་ལས་ལོགས་སུ་དགར་རུང་བར་འདོད་ཚུལ་ནས་འགོ་བརྩམས་ཏེ་ལོགས་སུ་དགར་རུང་བ་འདིས་རྗེས་དཔག་དང་དཔེ་གཞིའི་ཐོག་ནས་རང་སྒྲིག་འཛུགས་ཀྱི་འགྲེལ་བཤད་བྱེད་ཆོག་པའི་ཆོག་མཆན་སྤྲོད་ཀྱི་ཡོད། འདིར་དཔེ་མཚོན་ནི་གློག་གི་གྲངས་རྩིས་རིག་པ་ནས་བཟུང་སྟེ་སྒྲིག་སྦྱོར་ལེགས་པའི་རྣམ་གཞག་ནས་དེང་རབས་ཀྱི་རང་དབང་ནུས་པའི་རྩ་འཛིན་འོག་གི་ཉིན་རེའི་གསོ་བཅོས་བར་གྱི་དཔེ་མཚོན་རྣམས་ཡིན་ལ། དངོས་པོ་ལ་མངོན་པར་ཞེན་པ་མེད་པས་མངོན་པར་ཞེན་པ་མེད་པའོ། ། དངོས་པོ་ལ་མངོན་པར་ཞེན་པ་མེད་པས་མངོན་པར་ཞེན་པ་མེད་པའོ། ། འདི་ནི་འཇིག་རྟེན་དང་བརྗེ་རེས་བྱེད་པའི་མཐའ་མཚམས་ཀྱི་སྲིད་རུང་གི་ཚད་མཐོ་ཤོས་སུ་གཏོང་བའི་དོན་ཞིག་ཡིན་པར་གོ་ཆོག་པར་མ་ཟད། བྷེ་ཡེ་སེན་གྱི་དཔེ་མཚོན་གྱི་བདེན་དཔང་ཞེས་ཀྱང་བརྗོད་ཆོགདངོས་ཁམས་རིག་པ་བའི་ལྟ་ཚུལ་ལ། འདི་ནི་བྱ་བ་ཉུང་ཤས་བྱེད་པའི་རྩ་འཛིན་ཞིག་གམ་བཀག་སྡོམ་ཅན་གྱི་མཇུག་སྡུད་ཚད་མཐོའི་རྩ་འཛིན་ཞིག་ལས་ཅི་ཡང་མིན། མཚན་ཉིད་རིག་པ་བའམ་སེམས་ཁམས་རིག་པ་བ་ཞིག་གི་ལྟ་ཚུལ་ལ་ཆོས་ཤིག་གྲུབ་པ་ནི་རང་ངོས་ནས་གྲུབ་པ་ཞིག་ཡིན། དཔེ་མཚོན་གྱི་བདེན་དཔང་གིས་སྐྱེད་སྐྲུན་གྱི་དཔེ་མཚོན་གྱི་བྱེད་ལས་གཙོ་བོ་དེ་སྟོན་གྱི་ཡོད། དཔེ་མཚོན་དེས་མཐའ་མཇུག་གི་སྲིད་རུང་གི་རང་བཞིན་དང་དེའི་འགྱུར་ལྡོག་གི་ཚད་བཀག་ལ་གསལ་བཤད་བྱེད་པ་སྟེ། ཚིག་གཞན་ཞིག་གིས་བཤད་ན། འགྱུར་ལྡོག་གི་རང་དབང་གི་ནུས་པ་དེ་ཡིན། སྐྱེད་སྐྲུན་གྱི་དཔེ་མཚོན་ནི་འཇིག་རྟེན་དང་དེའི་སྟེང་གི་ཆོས་གཉིས་ཀའི་ཐུན་མོང་གི་ཁྱད་ཆོས་རྣམས་འབྱུང་སྲིད་པའི་སྐད་ཆ་ཙམ་ལས་མ་འདས། དེས་ན་འདིས་ང་ཚོར་ཅི་ཞིག་སྤྲོད་དམ།

གལ་སྲིད་ཁྱད་ཆོས་ཤིག་གི་ཐོག་ནས་གྲུབ་ཡོད་ན། ང་ཚོའི་སྐྱེད་བྱེད་ཀྱི་མ་ལག་ལ་བདེན་དཔང་སྒྲུབ་པ་ཙམ་ཡིན་ཕྱིན། ཡོད་ཚད་རྗེས་དཔག་གི་ནང་དུ་ཞུགས་པར་འགྲེལ་བཤད་རྒྱག་ཐུབ། བྷེ་ཡེ་སེན་གྱི་འགྲེལ་བཤད་ཅིག་ནང་། འདི་ནི་བྷེ་ཡེ་སེན་གྱི་ཡིད་ཆེས་དེ་སྐྱེད་བྱེད་ཀྱི་མ་ལག་ཅིག་གི་འོག་ནས་ཡར་རྒྱས་གཏོང་བ་དང་། དེས་ཁྱད་ཆོས་སམ་ཁྱད་ཆོས་ཤིག་དམིགས་སུ་བཀར་ནས་འགྲེལ་བརྗོད་བྱེད། འགྲེལ་བཤད་འདི་ནི་ཡིད་དབང་འཕྲོག་པ་ཞིག་རེད། གང་ཡིན་ཞེ་ན། དེ་ནི་དངོས་ཁམས་རིག་པ་དང་མཐུན་པ་ཞིག་ཡིན། དངོས་ཁམས་རིག་པ་ནི་ཚད་རྡུལ་གནས་ཚུལ་གྱི་རྣམ་གཞག་ནས་དངོས་ཁམས་རིག་པའི་བརྟག་ཞིབ་ཀྱི་རང་བཞིན་བར་རྗེས་དཔག་དང་ཚད་འཇལ་གྱི་འགྲེལ་བཤད་ཅིག་ཡིན། དེ་ཡང་། གཟུགས་ཅན་གྱི་ཆོས་རྣམས་ནི་གཟུགས་ཅན་གྱི་ཆོས་གཞན་དང་མི་འདྲ་བའི་ཁྱད་པར་གྱི་ཆོས་སུ་གྲུབ་པས་ན། གཟུགས་ཅན་གྱི་ཆོས་རྣམས་ནི་གཟུགས་ཅན་གྱི་ཆོས་གཞན་དང་མི་འདྲ་བའི་ཁྱད་པར་གྱི་ཆོས་སུ་གྲུབ་པར་འདོད་དོ། །

སེམས་ཅན་གྱི་སྤྱོད་ཚུལ་སྐོར་གྱི་ཡིད་ཆེས་གསར་པ་དེས་འཐུས་སྒོ་ཚང་བའི་འགྲེལ་བཤད་ཅིག་བྱེད་ཐུབ་བམ། གཅིག་བྱས་ན་བྱེད་ཐུབ་སྲིད། གང་ལྟར་ཡང་། ཆོས་ལ་རིགས་མི་འདྲ་བ་ཡོད་པ་དང་། དེ་དག་གི་ཁྱད་ཆོས་ནི་དེ་དག་གི་ནང་དུ་འདུས་པའི་སྐྱེད་སྐྲུན་གྱི་དཔེ་གཞི་ཡིན། དཔེ་གཞི་དེ་ཚོའི་ཁྱད་ཆོས་གཙོ་བོ་གཅིག་ནི་དེ་དག་གི་དུས་ཀྱི་གཏིང་ཚད་དེ་ཡིན། ཚིག་གཞན་ཞིག་གིས་བརྗོད་ན། དེ་དག་གི་འབྱུང་འགྱུར་དང་ལྷག་པར་དུ་དེ་དག་གི་བྱ་སྤྱོད་དམ་འདེམས་ཀའི་མཇུག་འབྲས་ལ་དཔེ་གཞི་འཇོག་པའི་ནུས་པ་དེ་ཡིན། དེ་ལ་འདི་སྐད་དུ་རིགས་ཀྱི་བུ་ཁྱོད་ཚུར་ཤེག་བྱང་ཆུབ་སེམས་དཔའི་ལམ་འདི་ལ་སློབས་ཤིག། ཁྱོད་ཀྱིས་ལམ་འདི་ལ་བསླབས་ཤིང་སྤྱད་དེ་འབད་ན་མྱུར་དུ་བླ་ན་མེད་པ་ཡང་དག་པར་རྫོགས་པའི་བྱང་ཆུབ་མངོན་པར་རྫོགས་པར་འཚང་རྒྱ་བར་འགྱུར་རོ། །

བྱེད་ལས་ཉུང་ཤས་ལྡན་པའི་རྩ་འཛིན་ལག་བསྟར་བྱེད་མཁན་གྱི་བྱེད་པོས་རེ་སྒུག་གི་རང་དབང་ནུས་པ་ཞེས་པའི་བྱེད་ལས་ཅན་གྱི་ནུས་པ་ཞིག་ཉུང་དུ་གཏོང་གི་ཡོད། རེ་སྒུག་གི་རང་དབང་ནུས་པ་དེ་རེ་སྒུག་གི་བརྡ་འཕྲིན་ཁེ་ཕན་དང་རེ་སྒུག་གི་རིན་ཐང་གཉིས་སུ་དབྱེ་ཆོག་རིན་ཐང་ནི་ཁྱད་ཆོས་སམ་གྲུབ་འབྲས་འདྲེན་པའི་གོ་སྐབས་སམ་རྒྱུ་རྐྱེན་ལ་ཟེར། འདིའི་གོ་དོན་ནི་རྣམ་དཔྱོད་ལྡན་པའི་སྤྱོད་ལམ་དེ་བྷེ་ཡེ་སེན་གྱི་ཡང་དག་པའི་ཚད་གཞིའི་རྣམ་པ་གཉིས་དང་མཐུན་པ་སྟེ། རིམ་པ་བཞིན་དུ་བྷེ་ཡེ་སེན་གྱི་འཆར་འགོད་དང་ཐག་གཅོད་ཀྱི་རྣམ་གཞག་གཉིས་དང་མཐུན་པ་དེ་ཡིན། མདོར་བསྡུས་ནས་བཤད་ན། རྣམ་དཔྱོད་ལྡན་པ་ནི་རིན་ཐང་དང་འབྲེལ་བའི་ཤེས་འདོད་ཅན་ཞིག་ཡིན།

སེམས་ཅན་གྱི་སྤྱོད་ཚུལ་སྐོར་གྱི་འགྲེལ་བཤད་འདིའི་གཞི་རྩ་ནི་ཕེ་ལེ་ཊོའི་སློབ་མ་ཚོར་ཁུངས་འདེད་ཐུབ་པ་དང་། དུས་རབས་བཅུ་དགུ་པར་ཧེལ་ཧོལ་ཛི་ཡིས་གསལ་པོར་བཤད་པ་ནི། ཤེས་ཚོར་གྱིས་མ་ཟིན་པའི་རྗེས་དཔག་གི་ལྟ་བ་དེ་ཚོ་ཡིན་ལ། ལྟ་བ་དེ་དག་གིས་ཁན་ཊིན་གྱི་ལྟ་གྲུབ་རིག་པ་དྲན་གསོ་གཏོང་གི་ཡོད། དཔེར་ན། འདུས་དོན་རིག་པའི་རང་འགུལ་འཕྲུལ་ཆས་དང་། ཚོད་དཔག་ལ་ཚོད་ལྟ་བྱེད་པའི་འདུ་ཤེས་འཛིན་སྟངས་དང་། འཕྲུལ་ཆས་སློབ་སྦྱོང་གི་ཁྲོད་ཀྱི་ཧེལ་ཧོལ་ཛི་འཕྲུལ་ཆས་སོགས་ཡིན། དུས་རབས་འདིའི་མགོ་སྟོད་དུ་རྗེས་དཔག་གི་འགྲེལ་བཤད་འདི་བྱུང་བ་དང་། སྔོན་དཔག་བྱེད་པ་དང་བྱེད་ལས་ཅན་གྱི་རྗེས་དཔག་ལྟ་བུའི་རྣམ་པའི་ཐོག་ནས་ད་ལྟ་བློའི་འཛིན་པ་དང་མ་ལག་དབང་རྩའི་ཚན་རིག་ནང་དར་ཁྱབ་ཆེ་བའི་བྱེད་ལས་མེད་ལུགས་ཀྱི་ཐབས་ལམ་ཁག་ལ་དོ་སྣང་སླར་ཡང་བྱུང་བ་རེད།

བྱེད་ལས་ཅན་གྱི་རྗེས་དཔག་ནི་བེ་ཡེ་སེ་ཡི་ཀླད་པའི་ཚོད་དཔག་གི་བྱེད་ལས་ཅན་མ་ཡིན་པའི་རྣམ་པ་ཞིག་ཏུ་བལྟ་ཆོག་པ་དང་། དེས་དབང་ཚོར་དང་འཆར་འགོད་གཉིས་རྗེས་དཔག་ཏུ་བརྩིས་ནས་སེམས་དང་ལྡན་པའི་རྗེས་སུ་དཔག་པ་དང་གཤིས་སྤྱོད་གཉིས་ཀྱང་དེའི་ཁོངས་སུ་བསྡུས་ཡོད། དེས་ན་རྗེས་དཔག་ཅེས་པ་ཅི་ཞིག་ཡིན་ནམ་ཞེ་ན། སྐབས་འདིར་རྗེས་དཔག་ཅེས་པ་ནི་དབང་ཚོར་དང་འབྲེལ་བའི་གཞི་གྲངས་ཀྱི་རྒྱུ་རྐྱེན་དང་འབྲེལ་བའི་སྐྱེད་སྲིང་རང་བཞིན་གྱི་དཔེ་གཞིའམ་ཚོད་དཔག་གང་རུང་ཞིག་གི་དཔང་རྟགས་ཆེ་རུ་གཏོང་བའི་རྒྱུད་རིམ་ཞིག་ལ་གོ་དགོས། དཔེར་ན། དངོས་པོ་གང་ཞིག་ལ་རང་གི་རྒྱུ་རྐྱེན་གྱི་རྐྱེན་གྱིས་ཤུགས་རྐྱེན་ཐེབས་པའི་སྣང་ཚུལ་ལ་ལྟོས་ཏེ་དངོས་པོ་དེའི་རྒྱུ་རྐྱེན་གྱི་རྐྱེན་གྱིས་ཤུགས་རྐྱེན་ཐེབས་པའི་སྣང་ཚུལ་ཞེས་བརྗོད། མདོར་ན། ནུས་ལྡན་གྱི་རྗེས་དཔག་གིས་ཀླད་པ་ནི་འཆར་སྣང་གི་དབང་པོ་ཞིག་ཏུ་འདོད་ཅིང་། དེ་ནི་འཆར་སྣང་དང་། ཚོད་དཔག་སྔོན་དཔག་སོགས་སྐྱེད་མཁན་ཞིག་དང་། དེ་དག་དབང་ཤེས་ཀྱི་བདེན་དཔང་ལ་བརྟེན་ནས་ཚོད་ལྟ་བྱེད་ཀྱི་ཡོད། སེམས་ཅན་གྱི་གཤིས་སྤྱོད་སྐོར་གྱི་འགྲེལ་བཤད་འདིས་ཆོས་རྣམས་ཀྱི་རང་བཞིན་ཇི་ལྟར་མཚོན་ནམ་ཞེ་ན། གཤམ་དུ་ང་ཚོས་ཀླད་པ་ལ་ཞིབ་ལྟ་བྱ་རྒྱུ་དང་། དངོས་ཁམས་རིག་པའི་རིགས་འདིའི་ཐོག་ནས་ཀླད་པའི་བྱེད་ལས་དང་བཀོད་པའི་སྐོར་ཇི་ལྟར་རྟོགས་ཐུབ་བམ་ཞེས་པ་དེ་ཡིན།

སྔོན་དཔག་བརྡ་སྒྲིག་དང་བྷེ་ཡེ་སེའི་ཡིད་ཆེས་གསར་གཏོད།

སྐྱེ་འཕེལ་གྱི་དཔེ་གཞི་ཞིག་ལ་མཚོན་ན། ཡིད་ཆེས་གོང་འཕེལ་གཏོང་བའམ་ཁྱབ་སྤེལ་གྱི་ཐབས་ལམ་ལེགས་པར་འགྲེལ་བརྗོད་བྱས་ཡོད་པ་དང་། ཐབས་ལམ་དེ་དག་གིས་ངེས་པར་དུ་དབང་རྩའི་དྲ་ཚོགས་ཀྱིས་ལག་བསྟར་བྱེད་དགོས་པའི་དགོས་ངེས་ཀྱི་བརྡ་འཕྲིན་བརྒྱུད་གཏོང་གི་རྣམ་པ་ངེས་བཟུང་བཟོས་ཡོད། རྒྱུན་མཐུད་ཀྱི་འཇིག་རྟེན་གྱི་གནས་སྟངས་ལ་གཞི་བཅོལ་བའི་སྐྱེ་འཕེལ་གྱི་དཔེ་གཞི་ཞིག་ལ་མཚོན་ན། ཐབས་ལམ་དེ་དག་ལ་བེ་ཡེ་སེན་གྱི་ཚབ་སྦྱོར་ལམ་སྔོན་དཔག་བརྡ་སྒྲིག་ཅེས་འབོད་པ་རེད། གནས་བབ་ཐ་དད་པ་དེ་དག་སྐྱེད་སྐྲུན་བྱེད་པའི་དཔེ་རིས་ལྟ་བུར་མཚོན་ན། དཔེ་རིས་དེའི་ནང་གྷི་རམ་གྱིས་ང་རང་ཐབ་ཚང་དུ་ཡོད་ཅེས་པའི་གནས་བབ་དེ་དང་བསྡུར་ན་ང་རང་རྒྱུན་མཐུད་ཀྱི་གློག་རྡུལ་ཕྱོགས་སྟོན་འཁོར་ལོའི་ས་ཚིགས་འདི་དག་ཏུ་ཡོད་ཅེས་པའི་གནས་བབ་དེ་གཉིས་ཀྱི་དབར་ལ་བརྡ་འཕྲིན་གཏོང་ལེན་བྱེད་པའི་འགྲོས་རིམ་དེ་ལ་ཡིད་ཆེས་ཁྱབ་སྤེལ་ལམ་ཡང་ན་འགྱུར་ལྡོག་བརྡ་འཕྲིན་གཏོང་ལེན་ཞེས་པའི་མིང་འདྲ་མིན་སྣ་ཚོགས་ཤིག་ཐོགས་པ་དང་། འགྲོས་རིམ་འདི་དག་ཐམས་ཅད་ནི་དཔེ་རིས་ཀྱི་བདེན་དཔང་ངམ་མཐའ་འཁོར་གྱི་འདྲ་མཚུངས་ཀྱི་སྟེང་ནས་གྱེན་གཟར་གྱི་རྣམ་པའི་ཐོག་ནས་འགྲེལ་བརྗོད་བྱེད་ཐུབ། མདོར་བསྡུས་ནས་བཤད་ན། དབང་རྩའི་འགུལ་སྐྱོད་ནི་རྗེས་དཔག་གི་རྒྱུད་རིམ་ཞིག་ཡིན། དཔེ་རིས། ༡ ལ་གཟིགས་སྔོན་དཔག་བརྡ་སྒྲིག་གི་འགྲེལ་བཤད་འཆར་འགོད་བྱས་པ།

གནད་ཆེ་ཤོས་ཤིག་ལ་དབང་རྩའི་འགུལ་སྐྱོད་ལ་རྒྱབ་རྟེན་བྱེད་པའི་གུག་ཆ་དང་དེ་ལས་བྱུང་བའི་ཡིད་ཆེས་གསར་འགྱུར་གྱི་རིགས་རྣམས་རྟག་ཏུ་སྔོན་དཔག་ནོར་འཁྲུལ་དུ་འགྲེལ་བཤད་བྱ་ཆོག་སྟེ། དེ་ནི་དབང་ཚོར་དང་འབྲེལ་བའི་ནང་འདྲེན་བརྡ་འཕྲིན་གྱི་སྔོན་དཔག་དང་རྟོག་ཞིབ་བྱས་པའི་ཚོར་སྣང་གཉིས་ཀྱི་བར་ལ་ཁྱད་པར་ཡོད་པ་དེ་རེད། སྔོན་དཔག་བརྡ་སྒྲིག་གི་འགྲོས་རིམ་ནང་སྔོན་དཔག་ནོར་འཁྲུལ་རྣམས་ནི་ཀླད་ཤུན་རིམ་པ་མཐོ་བའི་ནང་གི་ཕྱི་ང་རང་གི་གཏོར་གཟུགས་ཕྲ་ཕུང་རྣམས་ཀྱིས་དངོས་སུ་མཚོན་པར་བྱེད།

དཔེ་རིས། ༡ ། དཔེ་རིས་འདིས་སྔོན་དཔག་བརྡ་སྒྲིག་གི་ནང་དུ་བརྒྱུད་གཏོང་བྱེད་པའི་གོ་གནས་མཐོ་དམན་གྱི་བརྡ་འཕྲིན་རྣམས་མདོར་བསྡུས་ནས་བསྟན་ཡོད། སྔོན་དཔག་བརྡ་སྒྲིག་ནི་རྒྱུན་མཐུད་ཀྱི་གནས་བབ་གཞིར་བྱས་པའི་སྐྱེ་འཕེལ་གྱི་དཔེ་གཞིའི་འཆར་འགོད་ཅིག་ཡིན། འཆར་འགོད་འདི་དག་ནང་དབང་རྩའི་བྱ་འགུལ་དག་གིས་སྔོན་དཔག་ནོར་འཁྲུལ་ཉུང་དུ་གཏོང་ཕྱིར་དབང་ཚོར་ནང་འདྲེན་གྱི་རྒྱུ་རྐྱེན་སྐོར་གྱི་རེ་ལྟོས་རྣམས་བརྡ་སྒྲིག་བྱེད་ལ། རེ་ལྟོས་དེ་དག་ནི་རྒྱུན་མཐུད་ནས་བསྐྱར་གསོ་བྱེད་པ་རེད། སྔོན་དཔག་ནོར་འཁྲུལ་ནི་ཡར་ཕྱོགས་སུ་བགྲོད་པའི་དབང་ཚོར་ནང་འདྲེན་དང་དེའི་མར་འཕོས་པའི་སྔོན་དཔག་གཉིས་ཀྱི་བར་གྱི་ཁྱད་པར་དེ་ཡིན། ཉུང་དུ་གཏོང་ཚུལ་འདི་ནི་ཀླད་ཤུན་གྲལ་རིམ་གྱི་རིམ་པ་མི་འདྲ་བའི་དབར་དུ་ཡང་ཡང་འབྱུང་བའི་དབང་རྩའི་སྦྲེལ་སྦྱོར་དག་ལ་རག་ལས་ཡོད། ལྟག་འོག་གི་གཏོར་གཟུགས་ཕྲ་ཕུང་གྲུ་གསུམ་དམར་པོ་དག་གིས་རིམ་པ་མཐོ་ས་ནས་དམའ་སར་གནས་པའི་གཏིང་རིམ་གྱི་གཏོར་གཟུགས་ཕྲ་ཕུང་གྲུ་གསུམ་ནག་པོ་དག་ལས་བྱུང་བའི་གོང་ནས་འོག་ཏུ་འགྲོ་བའི་སྔོན་དཔག་རྣམས་དང་རིམ་པ་མཐོ་སར་ཡོད་པའི་རེ་ལྟོས་རྣམས་ཕན་ཚུན་བསྡུར་རེས་བྱེད་པར་འདོད་དོ། ། གཡོན་གྱི་རེའུ་མིག་འདིས་ཀླད་ཤུན་གྲལ་རིམ་གྱི་གོ་རིམ་དཀྱུས་མ་ཞིག་མཚོན་པར་བྱས་ཡོད་ལ། དེ་ཡང་གོང་ནས་གོང་དུ་འཕེལ་བ་ནི་སྔོན་དཔག་ནོར་འཁྲུལ་དང་། འོག་ནས་འོག་ཏུ་འཕེལ་བ་ནི་སྔོན་དཔག་ནོར་འཁྲུལ་ཡིན། ང་ཚོས་འདིར་བཀོད་ཟིན་པའི་ཕྱི་ང་རང་གི་གཏོར་གཟུགས་ཕྲ་ཕུང་དག་གི་དབང་རྩའི་འཕོ་འགྱུར་གྱི་སྒོ་འབྱེད་པའམ་སྟངས་འཛིན་བྱ་བ་དེས་དེ་དག་གིས་རེ་སྒུག་བརྡ་སྒྲིག་བྱེད་པའི་གཏིང་རིམ་གྱི་གཏོར་གཟུགས་ཕྲ་ཕུང་དག་གི་སྟེང་དུ་ལྟོས་བཅས་ཀྱིས་ཤུགས་རྐྱེན་ཇི་ལྟར་ཐེབས་པ་ཐག་གཅོད་བྱེད་ཀྱི་ཡོད། གཡས་ཀྱི་རེའུ་མིག་འདིས་མཐོང་ཚོར་མ་ལག་དང་འབྲེལ་བའི་དཔེ་རིས་ཤིག་བསྟན་ཡོད། དེས་སྔོན་དཔག་ནོར་འཁྲུལ་རྣམས་བརྒྱུད་གཏོང་བྱེད་པའི་གྱེན་རྒྱུའམ་མདུན་ཕྱོགས་ཀྱི་སྦྲེལ་མཐུད་མདའ་དམར་དང་སྔོན་དཔག་རྣམས་མཁོ་སྤྲོད་བྱེད་པའི་མར་རྒྱུའམ་རྒྱབ་ཕྱོགས་ཀྱི་སྦྲེལ་མཐུད་མདའ་ནག་པོའི་འབྱུང་ཁུངས་སུ་འདོད་པའི་ཕྲ་ཕུང་དག་མཚོན་གྱི་ཡོད། སྔོན་དཔག་འཁྲུལ་བ་དག་ལ་དེ་དག་གི་ཚོད་དཔག་བྱས་པའི་ཏག་ཏག་ཆ་ཚད་ཀྱིས་ལྗིད་ཁོག་བཟོས་ཡོད། ང་ཚོས་ཏག་ཏག་ཆ་ཚད་དེ་དཔུང་པའི་ཤ་གནད་ནས་ཐོན་པའི་འཆར་སྣང་དག་དང་སྦྲེལ་ནས་གླེང་ཟིན། དཔེ་རིས་འདིར་མདུན་ཕྱོགས་ཀྱི་མིག་གི་ཁྱབ་ཁོངས་དག་གིས་མཐོང་ཚོར་ཀླད་ཤུན་གཙོ་རིམ་ལ་སྔོན་དཔག་རྣམས་གཏོང་ཞིང་། དེས་པུས་མོའི་ལྷ་ངའི་གཞོགས་ཀྱི་ལུས་ལ་འཆར་སྣང་གཏོང་། དེ་ལྟར་ནའང་མདུན་ཕྱོགས་ཀྱི་མིག་གི་ཁྱབ་ཁོངས་དག་གིས་ཟམ་པའི་ལྟེ་ཉིང་ལ་ཡང་རང་འགུལ་ཚོར་སློང་གི་སྔོན་དཔག་རྣམས་གཏོང་ཞིང་། དེ་དག་ནི་མིག་འགུལ་མ་ལག་ལ་སྔ་རབས་ཀྱི་མིག་འགུལ་ལྡོག་འགུལ་བརྒྱུད་ནས་འགུལ་སྐྱོད་སློང་བའི་ཆེད་དུ་བརྒྱུད་གཏོང་བྱེད་པ་རེད། དཔེར་ན། མིག་དབང་གི་འགྲོས་རིམ་ཀུན་ནས་ཐོབ་པའི་བརྡ་འཕྲིན་རྣམས་གོ་རིམ་ལྡན་པའི་སྒོ་ནས་དབྱེ་གཅོད་བྱེད་པ་བརྒྱུད་གོང་ནས་འོག་ཏུ་འགྲོ་ཚུལ་གྱི་སྔོན་དཔག་རྣམས་མངོན་དུ་འགྱུར་བ་ལྟ་བུ་རེད། འཆར་འགོད་དང་འགུལ་སྐྱོད་སྟངས་འཛིན་གྱི་བྱ་བའམ། ཡང་ན་གནས་འགྱུ་དང་རང་འགུལ་བྱེད་ལས་བཅས་ལ་འགན་འཁུར་བའི་གནས་སྐབས་སོ་སོ་བའི་བར་སྟོང་སྐྱེད་སྐྲུན་གྱི་དཔེ་གཞི་དག་གི་ཆེད་དུ་ཡང་གོང་གསལ་གྱི་འཆར་འགོད་རི་མོ་དེ་དང་འདྲ་བའི་འཆར་འགོད་རི་མོ་རྣམས་ཞིབ་རྒྱས་སུ་བཟོ་ཆོག་པར་མ་ཟད། རྒྱུན་མཐུད་དང་གནས་འགྱུ་འདྲེས་མའི་དཔེ་གཞི་དག་གི་ཆེད་དུའང་དེ་ལྟར་བཟོ་ཆོག་པར་མ་ཟད།

མདོར་བསྟན།

དེ་ལ་བརྟེན་ནས་ཀླད་པའི་ནང་གོ་གནས་ཀྱི་རྗེས་སུ་དཔག་པའི་རྣམ་པ་ཞིག་མངོན་དུ་འགྱུར་ཞིང་། དེ་ཡང་ཀླད་ཤུན་རིམ་པའི་རིམ་པའི་བར་ཕན་ཚུན་བརྡ་འཕྲིན་གཏོང་ལེན་བྱེད་པ་དང་། དེར་སྔོན་དཔག་གི་ནོར་འཁྲུལ་རྣམས་རིམ་པ་འོག་མ་ནས་གོང་མར་འཕེལ་ནས་འཇིག་རྟེན་གྱི་གནས་བབ་རྣམས་བརྡ་སྒྲིག་བྱེད་པའི་དབང་རྩའི་ཚོགས་ལ་འགྱུར་བ་གཏོང་བར་བྱེད། གོང་གསལ་ཚོགས་འདུས་དེ་དག་གིས་རིམ་པ་འོག་མའི་ནང་གི་སྔོན་དཔག་ནོར་འཁྲུལ་རྣམས་སེལ་བའམ་ཡང་ན་ཕྱིར་འཐེན་བྱེད་པའི་ལྡོག་ཕྱོགས་ཀྱི་རྒྱུན་མཐུད་གོང་དུ་འབབ་པའི་སྔོན་དཔག་རྣམས་མཁོ་སྤྲོད་བྱེད་པ་རེད། དེ་ཡང་དེ་དག་གིས་སྔོན་དཔག་ནོར་འཁྲུལ་རྣམས་ཕྱིར་འདོན་བྱེད་པའི་ཕྱི་ང་རང་གི་གཏོར་གཟུགས་ཕྲ་ཕུང་དང་སྦྲེལ་ནས་འཁོད་པའི་འགོག་སྡོམ་དབང་རྩ་ཕྲ་གཟུགས་ནང་ཁུལ་པ་རྣམས་དམིགས་འཛུགས་ཀྱིས་བཀོལ་སྤྱོད་བྱེད། བཀོད་པ་འདི་དག་སྐྱེད་སྐྲུན་གྱི་དཔེ་གཞི་ཐ་དད་པ་སོ་སོར་བརྟེན་ནས་ཀྱང་འཁྲབ་སྟོན་བྱེད་ལ། དེ་དག་ནི་ཀླད་ཤུན་དང་ཀླད་ཤུན་འོག་མའི་རིམ་པའི་ནང་དུ་བསྐྱར་ཟློས་བྱེད་པའི་བརྡ་འཕྲིན་གྱི་གོ་རྟོགས་ལ་ལས་ཀའི་རྟ་ཕོ་ལྟ་བུར་གྱུར་ཡོད། ལྟ་ཚུལ་འདིའི་དབང་དུ་བྱས་ན། རང་སྒྲུབ་ནི་སྔོན་དཔག་ནོར་འཁྲུལ་ཉུང་དུ་གཏོང་བའམ་དེ་ལས་སླ་རུ་བཏང་ནས་ཧ་ལས་ཧོན་འཐོར་བ་ཞིག་ལ་གོ་ཆོག། བརྡ་འཕྲིན་རྣམ་གཞག་གི་དབང་དུ་བྱས་ན། ཧ་ལས་ཧོན་འཐོར་བ་འདི་ལ་རང་བརྡ་ཞེས་བརྗོད། འགྱུར་འགྲོས་རང་དབང་ནུས་པ་དེས་རང་བརྡའི་སྟེང་དུ་བཀོལ་སྤྱོད་བྱེད་ཆོག་པའི་འཆིང་ཐག་ཅིག་མཁོ་སྤྲོད་བྱེད། མདོར་བསྡུས་ན། རང་དབང་ནུས་པ་ཉུང་དུ་གཏོང་བ་ནི་ཧ་ལས་ཧོན་འཐོར་བ་ཉུང་དུ་གཏོང་བ་དང་གཅིག་མཚུངས་ཡིན་ལ། དེ་ནི་སྐྱེད་སྐྲུན་གྱི་དཔེ་གཞིའི་དཔང་རྟགས་ཆེ་རུ་གཏོང་བ་དང་དོན་གཅིག་ཡིན་ཞིང་། དབང་ཚོར་དང་ཁོར་ཡུག་བར་གྱི་བརྗེ་རེས་དེ་ཧ་ལས་ཧོན་འཐོར་བ་ཞིག་ཡིན།
༣ ཞིབ་ཚགས་བྱེད་དགོས་པའི་གལ་ཆེའི་རང་བཞིན།

གོང་དུ་བཤད་པའི་ཐབས་ཚུལ་དེས་ང་ཚོས་གཞན་དང་རང་ཉིད་ཀྱི་གཤིས་སྤྱོད་ལ་དཔྱོད་ཐུབ་པའི་སྒོ་ནས་ཚོར་ཤེས་ཀྱི་འཇིག་རྟེན་གྱི་སྐོར་ལ་རྗེས་དཔག་བྱེད་ཐུབ། རང་དབང་ནུས་པའི་རྩ་འཛིན་གྱི་བཀོལ་སྤྱོད་ཡོངས་གྲགས་ཤིག་ནི་ཡིད་ཆེས་གོང་མཐོར་གཏོང་བའམ་བརྡ་འཕྲིན་ཀླད་པའི་ནང་གཏོང་བའི་སྔོན་དཔག་བརྡ་སྒྲིག་གི་རྣམ་པའི་ཐོག་ནས་བྱེད་པ་དེ་ཡིན། བཀོལ་སྤྱོད་འདི་ལ་ཡིད་དབང་འགུག་པའི་རྣམ་པ་མང་པོ་ཞིག་ཡོད། ང་ཚོས་འདིར་མར་ཁུ་སོལ་མེས་སི་ལགས་ཀྱིས་ལེའུ་འདིའི་ནང་ཚོར་བའི་རང་བཞིན་དང་ཚོར་བའི་རང་བཞིན་གྱི་སྐོར་ལ་འགྲེལ་བརྗོད་བྱས་པའི་རྣམ་པ་ཞིག་འདེམས་རྒྱུ་ཡིན། འདི་ནི་ཞིབ་ཚགས་ཀྱི་དོན་སྤྱི་དང་། སེམས་ཁམས་རིག་པའི་དཔྱད་ཐབས་ཀྱི་ཐོག་ནས་ཡིད་བྱེད་ལྟ་བུ་ལྐོག་གྱུར་གྱི་བྱ་སྤྱོད་དམ། སེམས་ཀྱི་བྱེད་ལས་ཀྱི་དོན་སྤྱི་དག་ལ་དཔྱོད་པའི་ཐོག་གཞི་བཅོལ་ཡོད།

སྔོན་དཔག་ནོར་འཁྲུལ་རྣམས་ནི་གཞན་དུ་བཤད་ན། ཡིད་ཆེས་གོང་མཐོར་གཏོང་བྱེད་ཀྱི་རང་དབང་ནུས་པའི་གྱེན་གཟར་དེ་དག་ནི་མཐོ་རིམ་གྱི་གནས་རིམ་གང་རུང་ཞིག་གི་ནང་གསར་འགྱུར་རིན་ཐང་ལྡན་པའི་བརྡ་འཕྲིན་རྣམས་གོང་རིམ་གྱི་གནས་རིམ་བར་དུ་སྐྱེལ་འདྲེན་བྱེད་པར་ངོས་འཛིན་བྱེད་ཆོག་འོན་ཀྱང་འདི་ནི་ཆ་ཚང་བ་ཞིག་མིན། གནས་རིམ་མཐོ་བ་རྣམས་ཀྱིས་སྔོན་དཔག་ནོར་འཁྲུལ་གང་ཞིག་ལ་ཉན་རྒྱུ་འདེམས་དགོས། དེ་ནི་ང་ཚོས་ཡིད་ཆེས་འཕེར་བའི་གསར་འགྱུར་བརྒྱུད་ལམ་ནམ་བརྡ་འཕྲིན་གྱི་འབྱུང་ཁུངས་འདེམས་པ་དང་ཀུན་ནས་མཚུངས། འདེམས་སྒྲུག་འདི་ནི་སྔོན་དཔག་བྱེད་ཐུབ་མིན་ནམ་ཡང་ན་འཁྲུལ་མེད་ཡིན་པའི་སྔོན་དཔག་ལ་བརྟེན་ཡོད། དཔེ་རིས། ༡ ནང་ཚོན་ཁྲ་དམར་པོས་བསྟན་ཡོད། སྔ་དཔགས་ནོར་འཁྲུལ་ངེས་ཅན་རེ་འགྲུབ་པའི་ནུས་པ་དེ་གོང་འཕེལ་དུ་སོང་བ་དེས། ཡིད་ཆེས་གསར་འགྱུར་གྱི་ཐད་ལ་དེ་དག་གི་ཤུགས་རྐྱེན་གོང་མཐོར་གཏོང་བ་དང་། ཡིད་བྱེད་འདེམས་སྒྲུག་གི་ཁྱད་ཆོས་ཚང་མ་ལྡན་པར་འགྱུར། ལུས་ཁམས་གནས་ལུགས་ཀྱི་ཆ་ནས་བཤད་ན། འདི་ནི་དབང་རྩའི་ཕྲ་ཕུང་གི་ཚོགས་ཀྱིས་སྔ་དཔགས་ནོར་འཁྲུལ་ཁྱབ་བསྒྲགས་བྱེད་པར་སྐུལ་སློང་དང་ཡང་ན་མཐུད་མཚམས་རྗེས་འགྲོའི་ཁེ་ཕན་གོང་མཐོར་གཏོང་བ་ཙམ་ལ་གོ་དགོས། ལྟ་ཚུལ་འདི་གཞིར་བྱས་ན། ཡིད་བྱེད་དང་སྔ་རབས་ཀྱི་དབང་རྩའི་བཅོས་སྒྲིག་བྱེད་པོ་དག་གིས་མཐུད་མཚམས་ནུས་པའི་འཕོ་འགྱུར་ལ་བཟོ་བཅོས་བྱེད་པ་གཉིས་ཀྱི་དབར་ལ་འབྲེལ་བ་དམ་པོ་ཞིག་ཡོད། དེ་ཡང་དབང་རྩའི་ཕྲ་ཕུང་དག་གིས་འགོག་སྡོམ་བྱེད་ལས་མྱུར་དུ་སྐྱེད་སྐྲུན་བྱེད་པའི་དབང་རྩའི་ཕྲ་ཕུང་ནང་ཁུལ་དང་གཏོར་གཟུགས་ཕྲ་ཕུང་དབར་བར་འདུམ་བྱེད་པའི་བྱེད་ལས་ཅན་གྱི་མཐུད་མཚམས་རྗེས་འགྲོའི་ཡ་ལན་ཐད་ཀ་མ་ཡིན་པ་དག་གི་དབར་ལ་འབྲེལ་བ་དམ་པོ་ཞིག་ཡོད།

ཞིབ་ཚགས་བཟོ་སྐྲུན་གྱི་གནད་དོན་གཙོ་བོ་གཅིག་ནི། སྔོན་དཔག་འཁྲུལ་བ་འགའ་ཞིག་ཏག་ཏག་མིན་པར་མཐོང་ཚེ་དེ་དག་ཕྱིར་འདོན་བྱེད་པའམ་སྣང་མེད་དུ་འཇོག་པའི་ང་ཚོའི་ནུས་པ་དེ་ཞན་དུ་གཏོང་བ་དེ་རེད། འདིའི་དཔེ་མཚོན་གཙོ་བོ་ཞིག་ནི་འགུལ་སྐྱོད་ཀྱི་མཇུག་འབྲས་བརྡ་སྟོན་བྱེད་པའི་དབང་ཚོར་སྔོན་དཔག་འཁྲུལ་བ་རྣམས་ཉམས་དམས་སུ་འགྲོ་བ་དེ་རེད། གལ་ཏེ་ང་ཚོས་ལུས་དང་ལུས་ཚོར་གྱིས་ང་ཚོར་སྤྲད་པའི་བརྡ་འཕྲིན་རྣམས་སྣང་མེད་དུ་འཇོག་མ་ཐུབ་ཚེ། ང་ཚོས་སྔོན་དཔག་བྱས་པའི་འགུལ་སྐྱོད་གང་རུང་ལ་འཕྲལ་དུ་ལེགས་བཅོས་བྱེད་དགོས་པ་དང་། དེ་ལྟར་བྱས་ཚེ་ང་ཚོས་འགུལ་སྐྱོད་བྱེད་མི་ཐུབ། དེས་དབང་ཚོར་ཞིབ་ཚགས་རང་བཞིན་དེ་འགུལ་སྐྱོད་བྱེད་པའི་ཚོར་ཤེས་ཀྱི་གནས་སྐབས་རིང་མཚམས་འཇོག་བྱེད་དགོས་པ་བཟོས་ཡོད། དཔེར་ན། མིག་འགུལ་གྱི་གནས་སྐབས་ཀྱི་མིག་གི་རྒྱུག་བརྡ་རྣམས་རེས་འགའ་བར་འགོག་སྡོམ་བྱེད་དགོས་པ་ལྟ་བུ་རེད།

མདོར་བསྟན།

ཀླད་པ་ལྟ་བུ་ནི་སྔོན་དཔག་འཁྲུལ་བ་རྣམས་གཞི་ལ་བཞག་ནས་སྔོན་དཔག་དང་བསྐྱར་ཞིབ་བྱེད་པའི་གྲངས་རྩིས་ཀྱི་དབང་པོ་ཞིག་ཡིན་པའི་བཤད་ཚུལ་འདི་ད་བར་དུ་བྱུང་ཡོད། གནད་ཆེ་ཤོས་ཤིག་ལ་སྔོན་དཔག་འདི་དག་དོ་སྣང་ངམ་ཀུན་སློང་གི་ཚོགས་ཤིག་མཚོན་པའི་ཞིབ་ཚགས་ཀྱི་སྔོན་དཔག་དང་། ཡང་ན། སྔོན་དཔག་བྱེད་ཐུབ་མིན་གྱི་སྔོན་དཔག་དང་སྦྲེལ་ནས་ཡོད། དེ་ཡང་ང་ཚོས་ཞིབ་ཚགས་ཀྱི་ལྕི་ཡང་གི་རྒྱུད་རིམ་ཞིག་བརྒྱུད་ནས་སྔོན་དཔག་གི་ནོར་འཁྲུལ་རྣམས་འདེམས་སྒྲུག་གམ་ཡང་ན་དེ་དག་གི་ཤུགས་ཆུང་དུ་གཏོང་ཐུབ་ཀྱི་ཡོད། ཞིབ་ཚགས་ཀྱི་ལྕི་ཡང་འདི་ནི་དབང་རྩའི་ཕྲ་ཕུང་ཚོགས་འོས་འཚམ་ཞིག་གི་འཕེལ་སྐྱེད་དང་། མཐུད་མཚམས་རྗེས་ཀྱི་ཚོར་སློང་། ཡང་ན་སད་སློང་བཅས་ལ་འགྱུར་བ་གཏོང་བ་ཙམ་ལས་མ་འདས།

དཔེ་རིས་དང་པོའི་ནང་བཀོད་པའི་འཆར་འགོད་དེས་ང་ཚོའི་འཚོ་བའི་འཇིག་རྟེན་ལ་ཁ་ལོ་སྒྱུར་བའི་དགོས་དོན་ལ་འཚམས་པའི་སྐྱེ་འཕེལ་གྱི་དཔེ་མཚོན་གྱི་གནད་ཆེ་བའི་ཆ་ཞིག་གསལ་སྟོན་བྱས་ཡོད། དེ་ནི་གྲལ་རིམ་གྱི་བཀོད་པ་དེ་རེད། བཀོད་པ་འདིའི་རིགས་ལ་ཕྱོགས་མང་པོ་ཞིག་ནས་བལྟ་ཆོག་སྟེ། དཔེར་ན། རྒྱུ་རྐྱེན་དང་། གྲལ་རིམ་གྱི་རིམ་པ། དུས་ཀྱི་གཏིང་ཚད་བཅས་ཀྱི་ཆ་ནས་བལྟ་ཆོག། ལྟ་ཚུལ་འདི་དག་ནི་གནད་དོན་འདི་ལ་ཁིར་སི་ཧྥིལ་ཌེ་ཡིས་བཤད་པའི་དཔྱད་ཐབས་དང་སྦྲེལ་རྒྱུའི་ཆེད་དུ་སྔོན་ནས་གཏན་འབེབས་བྱས་པ་ཞིག་ཡིན། ཁོང་གིས་བྱེད་ལས་ཅན་གྱི་རྗེས་དཔག་ལ་གསར་གཏོད་རང་བཞིན་གྱི་ཆ་ཞིག་ཡོད་པ་དེ་ནན་གྱིས་བརྗོད་ཡོད་དེ། ང་ཚོས་དབང་ཤེས་སམ་མྱོང་འདྲིས་ཀྱི་གཞི་གྲངས་གང་ཞིག་ལ་ཚོད་དཔག་བྱེད་པའམ་འགྲེལ་བརྗོད་བྱེད་པའི་རྩེད་མོའི་ནང་ཞུགས་པ་ལྟ་བུ་རེད། མདོར་ན། ཆོས་ཐམས་ཅད་ནི་ང་ཚོའི་དབང་ཤེས་ཀྱི་སྣང་ཚུལ་དང་། ཡང་ན། འཇིག་རྟེན་གྱི་ཚད་འཇལ་བྱེད་ཐབས་ལ་འགྲེལ་བཤད་བྱེད་པའི་ཚོད་དཔག་ཅིག་ཡིན། གལ་ཆེ་བ་ཞིག་ལ། རྟོག་བཏགས་ཀྱི་ཆོས་འདི་དག་གི་ནང་དུ་བར་སྣང་དང་དུས། གཅིག་བྱས་ན་བདག་དང་མྱོང་བ། ཡང་ན།